
2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

International Journal of Cooperative Information Systems
Vol. 22, No. 1 (2013) 1350005 (26 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218843013500056

CONCEPT LOCATION MODELING THROUGH
BUSINESS PROCESS VIEWS

RICARDO PÉREZ-CASTILLO∗ and MARIO PIATTINI†

Alarcos Research Group, University of Castilla-La Mancha
Paseo de la Universidad, 4 13071, Ciudad Real, Spain

∗ricardo.pdelcastillo@uclm.es
†mario.piattini@uclm.es

BARBARA WEBER

University of Innsbruck
Technikerstraße 21a, 6020 Innsbruck, Austria

barbara.weber@uibk.ac.at

Received 2 November 2011
Accepted 6 December 2012
Published 10 April 2013

Concept location is a key activity during software modernization since it allows main-
tainers to exactly determine what pieces of source code support a specific concept. Real-
world business processes and information systems providing operational IT support for
respective processes can be misaligned as a consequence of uncontrolled maintenance
over time. When concepts supported by an information system are getting outdated or
misaligned, concept location becomes a time-consuming and error-prone task. Moreover,
enterprise information systems (which implement business processes) embed significant
business knowledge over time that is neither present nor documented anywhere else. To
support the evolution of existing information systems, the embedded knowledge must
first be retrieved and depicted in up-to-date business process models and then be mapped
to the source code. This paper addresses this issue through a concept location approach
that considers business activities as the key concept to be located and discovers different
partial business process views for each piece of source code. Thus, the concept location
problem becomes the problem of extracting such views. This approach follows model-
driven development principles and an automatic model transformation is implemented to
facilitate its adoption. Moreover, a case study involving two real-life information system
demonstrates its feasibility.

Keywords: Business process views; concept location; maintenance; knowledge discovery
metamodel; model driven development.

1. Introduction

As a consequence of uncontrolled maintenance, information systems, and software
in general, age over time becoming legacy information systems (LISs). When the
maintainability of LISs decreases under acceptable limits companies must replace or
modernize their LISs according to their current business processes to keep their com-
petitiveness level.1 Unfortunately, the companies’ business process models, which

1350005-1

http://dx.doi.org/10.1142/S0218843013500056


2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

depict a set of coordinated activities and tasks to achieve their business objectives,2

are often outdated and are not aligned with the actual business processes sup-
ported by their LISs. This is due to the fact that LISs are maintained to support
the progressive business process evolution motivated by the need of retaining the
competitiveness level in changeable environments. As a result, LISs progressively
embed much valuable business knowledge during the system maintenance.3 In addi-
tion, the embedded business knowledge is neither present nor documented anywhere
else. When LISs are replaced or modernized, their embedded business knowledge
has therefore to be preserved in the evolved information systems, and business
processes models must be updated with the embedded knowledge representing the
real-world business processes.4 Preservation of embedded business knowledge entails
at least two main challenges. The first challenge is the discovery or elicitation of
business knowledge itself and the second challenge consists of the effective usage
of the discovered knowledge to take advantage during evolution and modernization
of LISs.

The first challenge (i.e. discovery of the embedded business knowledge) can be
addressed through some techniques related to business process mining.5 It seeks
to extract business process knowledge from process execution logs known as event
logs, which contain information about the start and completion of activities exe-
cuted by the processes.6 Most process mining techniques and algorithms take, as
input, event logs obtained from process-aware information systems (PAIS),7 e.g.
process management systems such as enterprise resource planning (ERP) or cus-
tomer relationship management (CRM) systems, whose nature (in particular their
process-awareness) facilitates the direct registration of events throughout process
execution. Indeed, event logs are represented in a common format used by the
majority of process-mining tools known as MXML (Mining XML).8 However, LISs
(which mainly are the focus of our work) typically are not process-aware and respec-
tive process mining techniques cannot be directly applied. In previous work, we con-
sequently developed a technique for obtaining event logs from LISs using dynamic
analysis9,10 making business process mining techniques applicable to LISs that nec-
essarily are not process-aware systems.

The second mentioned challenge concerns the effective usage of the discovered
business knowledge in order to achieve more effective LIS modernization processes.
All functionalities or services implemented in the enhanced information systems
must support, or be aligned with, the actual business processes previously discov-
ered.4 As a consequence, the key activity in this scenario is concept location11 (also
known as feature location) in order to answer questions like what pieces of source
code of a LIS supports a particular part or concept of a business process? Moreover,
concept location can also be used to analyze what concepts of the actual business
process are supported by a particular piece of source code?

This paper focuses on both challenges although its main contribution is a con-
cept location approach regarding second challenge since business process discovery
has been addressed in previous work.12,9,10,13 The approach consists of an automatic

1350005-2



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

concept location technique through the mapping between pieces of legacy source
code, represented by a code model, and partial views of business process models
discovered from event logs. In general terms, a process view allows an abstrac-
tion from undesired detailsby omitting or even aggregating activities.14 A process
view results from specific transformations applied to a process model.15 In partic-
ular terms, business process views are partial representations of a business process
model in terms of some properties,16 for example a view grouping the set of business
activities carried out by a specific supporting tool. Business process views facilitate
the location of business process model’s concepts that are supported by particular
pieces of source code.

The approach can be used in two different scenarios. First, when a real-world
process evolves and maintainers therefore want to propagate this change to the
LIS, our concept location approach can determine what concepts of the business
process are supported by a particular piece of code. It reduces maintenance efforts
and the maintenance costs therefore are also lower. Second, when maintainers do
not have any concept location information yet but the LIS must be re-implemented
as a result of a business process change, our approach facilitates both the discov-
ery of up-to-date business process models as well as concept location information.
This location information is especially important when system is being modernized,
since maintainers know the certain piece of source code that should be replaced or
improved so that it supports the change in a particular business process activity.
Moreover, this information can then be used in future maintenance projects (i.e.
Scenario 1).

The remaining of the paper is organized as follows. Section 2 summarizes work
related to our proposal. Section 3 presents in detail our concept location approach
based on the discovery of process views. Section 4 provides an industrial case
study involving two LISs. Finally, Sec. 5 provides a conclusion and discusses future
research lines.

2. Related Work

This section summarizes work related to business process mining techniques to
discover business processes (see e.g. Sec. 2.1) as well as related to concept location
techniques (see e.g. Sec. 2.2).

2.1. Business process mining

There exists much work concerning business process mining. Most proposals provide
mining techniques or algorithms to obtain business processes from event logs. For
example, Van der Aalst et al.17 proposed the α-algorithm to discover the control
flow of business processes from event logs. Similarly, Madeiros et al.18 suggested
a genetic algorithm for business process discovery. Other approaches focus on the
registration of event logs, e.g. Ingvaldsen et al.19 focus on ERP systems to obtain

1350005-3



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

event logs from the SAP’s transaction data logs. Günther et al.20 provide a generic
import framework for obtaining event logs from different kinds of PAIS. Typically,
process mining algorithms assume the presence of a PAIS which registers the events
regarding the execution of a business process in events logs. Pérez-Castillo et al.,9 in
turn, propose an approach to obtain event logs by means of the injection of traces in
source code to enable the registration of event logs for traditional nonprocess-aware
systems. This work facilitates the application of the aforementioned algorithms to
any kind of information system.

There are additional approaches to discover business processes by directly
applying reverse engineering techniques on LISs, i.e. without the consideration
of event logs [see Fig. 1(a)]. For example, Zou et al.21 developed a framework
that statically analyzes the legacy source code and applies a set of heuristic
rules to recover the underlying workflows. Other work focuses on recovering busi-
ness processes by dynamically tracing the system execution driven by use cases
(e.g. Cai et al.22) or driven by the users’ navigation in graphical user interfaces
(e.g. di Francescomarino et al.23).

Figures 1(a) and 1(b) provides a comparison of static and dynamic approaches
for discovering business processes. While static analysis exhaustively analyzes pro-
gramming language descriptions line by line, dynamic analysis focuses on actual
information that can only be known at runtime. Static approaches are able to
discover large business processes, since the structure of the entire LIS can be repre-
sented as code models. However, business processes obtained using static analysis
are less accurate than processes obtained using dynamic approaches, since dynamic
ones consider system execution information like event logs, which discards excep-
tional or dead parts of the source code. In fact, event-log-supported techniques are
suitable to provide compact and accurate business processes. It is due to the fact

1 1

source
code

code
model

2 2

n n

1 1

source
code

code
model

2 2

n n

Overall Business
ProcessModel

event
model

Overall Business
ProcessModel

event
model

Business ProcessView

system
execu�on

system
execu�on

Overall Business
ProcessModel

Fig. 1. Comparison of three approaches to discover business processes.

1350005-4



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

that dynamic analysis only considers the business activities that are actually carried
out through the system execution.

2.2. Concept location and process views

Several approaches for concept location during the maintenance stage have been
proposed in literature. Wilde et al.24 proposed software reconnaissance, a dynamic
approach to locate user functionalities into a LIS through the analysis of the exe-
cution of different test cases. This proposal provides various views of software that
maps features to program components at different abstraction levels, although it
ignores the business knowledge level. Similarly, Eisenbarth et al.11 locate features in
source code by gathering information from a set of scenarios invoking the features.
Rather than assuming a one-to-one correspondence between features and scenar-
ios as in previous works, it manages scenarios that invoke many features, which is
also made in our proposal. Marcus et al.25 provided the latent semantic indexing
(LSI) technique to map concepts expressed in natural language by the programmer
to the relevant parts of the source code. Chen et al.26 proposed a concept location
technique based on an abstract system dependency graph that is statically derived.

The concepts of all these approaches are expressed in different ways (e.g. as a
functionality, in natural language, etc.). Business process models (as used in our
approach) can help to establish concepts by using the business process modeling and
notation (BPMN) standard,27 which is understood by business experts and main-
tainers. Furthermore, the obtained concept location is better during software mod-
ernization, since business activities represent concepts at a higher abstraction level.
Motahari et al.16 also considered business activities as concepts since it obtains
business process views. Contrary to our approach, Motahari et al. located busi-
ness process views for each entire subsystem of the LIS. Our approach, however,
maps different business process views to particular pieces of source code by combin-
ing artifacts obtained by both process mining approaches: the static and dynamic
one [see Fig. 1(c)]. Eshuis et al.14 proposed a method to obtain process views from
structured process models instead of from LIS. First, a noncustomized process view
is constructed from an internal structured process model by aggregating internal
activities the provider wishes to hide. Second, a customized process view is con-
structed by aggregating and omitting activities from the noncustomized view that
are not requested by the consumer. Schumm et al.15 introduced a metamodel for
process views as well as process viewing patterns which specify elementary trans-
formations to alter an existing process. This work provides a platform-independent
mechanism to obtain process views in a similar way that our proposal. However, it
does not consider process views as a mapping between legacy source code and busi-
ness concepts. Finally, Zhao et al.28 proposed FlexView, a rigorous view model to
specify the dependency and correlation between structural components of process
views with emphasis on the characteristics of WS-BPEL. The disadvantage of this
framework is that is technologically independent.

1350005-5



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

3. Concept Location Through Business Process Views

The problem of concept location identification is equated with the problem of busi-
ness process view extraction. The following subsections present in detail the pro-
posed concept location technique.

3.1. Overview

The proposed concept location approach is based on the discovery of business pro-
cesses from LISs and the generation of particular process views. A business process
view16 provides an abstract representation of one or more relevant business activi-
ties (e.g. managing patient) regarding tasks (e.g. patient admission, patient inter-
vention), its control flow, and some particular properties (e.g. users, execution time,
etc.). Business process views play a similar role than data views play in relational
databases.

The concept location technique is aimed at knowing, through a business process
view, what pieces of legacy source code support a specific fragment of the entire
business process supported by the LIS. In addition, each business activity in a
business process view contains the information about the fine-grained piece of source
code that supports this activity. As a result, the concept location is achieved in
two directions: source code is mapped with business process views, and business
activities within process views are mapped with source code units.

While existing approaches either focus on static analysis [see Fig. 1(a)] or
dynamic analysis [see Fig. 1(b)], the proposed technique obtains business process
view models by combining both approaches. The input of the technique is two
kinds of models: code models obtained using the static approach and event logs
obtained through the dynamic approach [see Fig. 1(c)]. First, the code model rep-
resents an exhaustive structure of all the different parts of the legacy source code
(see e.g. Sec. 3.2). Second, the event model depicts an event log, i.e. a certain exe-
cution sequence of business activities supported by the LISs (see e.g. Sec. 3.3).
Furthermore, the concept location technique consists of pattern matching between
both kinds of input models (see e.g. Sec. 3.4). Finally, pattern matching is auto-
mated by means of model transformation that applies the set of proposed patterns
(see e.g. Sec. 3.5).

The technique follows the model-driven development principles, thus it uses
particular metamodels to represents the involved models. Metamodels define the
possible set of elements and its relationships for each kind of model. Each model
must then conform to the metamodel established to create that kind of models. Par-
ticularly, both input models (i.e. code and event models) are represented according
to the knowledge discovery metamodel (KDM)11 which is a standard especially
developed to represent models during the reverse engineering stage in a bottom-up
manner. In contrast to unified modeling language (UML), KDM facilitates the rep-
resentation of knowledge discovered from different legacy software artifacts and dif-
ferent viewpoints of the system (e.g. source code, databases, events, user interfaces).

1350005-6



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

In addition, KDM has become the common interchange format to share models
about software artifacts between tools for modernizing and evolving LISs. The
main advantage of KDM regarding other specifications such as UML is that it
can be used in combination with related specifications of the architecture-driven
modernization (ADM) initiative proposed by the OMG,29 e.g. abstract syntax tree
metamodel (ASTM) or software metrics metamodel (SMM). As a consequence, the
approach uses KDM to ensure its applicability in industrial software modernization
projects.

3.2. Code model

The codemodel represents a language-independent representation for various con-
structs defined by common programming languages. The code model depicts imple-
mentation level program elements and their associations from a static view point.
A sole code model can represent all the source code of a whole LIS or there can
be several code models representing different pieces of a certain LIS. In fact, code
models could be fine-grained models (e.g. a model for each compilation unit) or
could be coarse-grained models (e.g. a model for each subsystem). Software engi-
neers make the decision about what parts of LISs must be grouped under the same
code model to obtain a respective business process view.

3.2.1. Technique for obtaining a code model

Code models can be automatically obtained by statically analyzing source code.
Static analysis is a reverse engineering technique based on compiler techniques such
as parsing and data flow algorithms, which provide an abstract interpretation of the
source code structure. Our approach uses the automatic static analysis technique
described previously in Ref. 12, which syntactically analyzes the existing source
code and progressively obtains a code model with all the information retrieved.
This kind of analyses is automated by means of parsers that are built according
to the particular grammar or metamodels. The static analysis is exhaustive sine it
analyzes all the programming expressions line by line. However, actual, run-time
values are unknown. Thus, this technique following the static approach is not able
to obtain information about runtime behavior. Despite this drawback, the main
advantage of this technique is that it efficiently retrieves full knowledge of the LIS’s
structure [see Fig. 1(a)].

3.2.2. Metamodel for the code model

The syntactic analyzer especially developed for the programming language of the
LIS represents the retrieved information in a standardized way according to the
aforementioned KDM metamodel. The proposed technique particularly consid-
ers the specification of the code and action packages defined by the KDM stan-
dard.30 Figure 2 summarizes the KDM metamodel concerning code and action

1350005-7



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

Fig. 2. The code metamodel according to the KDM standard.

packages in order to comprehend the information registered through a code model.
A LIS is represented as a CodeModel element, the root metaclass. A Code-
Model is in turn composed of AbstractCodeElements, a metaclass that repre-
sents an abstract class for all KDM entities that can be used as CallableUnit,
StorableUnit, etc. CodeElements are also interrelated by means of AbstractCode-
Relationships, a metaclass to represent an abstract class for all KDM rela-
tionships that can be used to represent the code such as Flow, Calls, Reads,
Writes.

3.3. Event model

The event model represents an event log, which collects different sequences of busi-
ness activities executed by the LIS (i.e. different business process instances). Each
event model can contain thousands of business process instances. While the code
model describes the LIS from a static point of view, the event model provides
the dynamic viewpoint of the information system. In our combined approach, this
model is aimed at discovering the business processes embedded in the LIS. On the
contrary, code models allow maintainers filter out some elements of event models
and obtain business process views according to certain pieces of source code. In
contrast to the code models, the event model always represents information regard-
ing the whole LIS. However, there could be various event models with information
about system executions at different times. In addition, the execution of different
information systems (which support the same business processes) can be registered
in a sole event log.

1350005-8



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

3.3.1. Technique for obtaining event models

For PAIS the event model can be obtained automatically,5 since they have mech-
anisms to register event logs. However, for nonprocess-aware information systems
reverse engineering techniques are needed to obtain event models. In previous work,
we have developed a technique for automatically obtaining event models from tradi-
tional nonprocess aware information systems.10 This technique is based ondynamic
analysis of the LIS and registers the execution of business process activities.

Since traditional information systems do not have any in-built mechanism to
register events about executed business processes, this technique instruments such
systems enabling them to register events. The instrumentation is semi-automated
by a parser that syntactically analyzes de source code and injects statements in
particular places of the code to register events during system execution. Statements
are injected into callable units, i.e. Java methods, C procedures or Visual Basic
functions (depending of the programming language). However, not all the executions
of callable units are registered as events. Some callable units such as fine-grained
or technical callable units (e.g. logging or data access modules) do not correspond
to business activities and must be discarded. The injection in the appropriate place
is consequently aided by some information provided by experts. Such experts (i)
delimit business processes with the start and end callable units of each process;
(ii) establish the boundaries of nontechnical source code to be instrumented; and
finally, (iii) they identify those code elements that can be treated as correlation
objects, which are used to build each process instance with their correct events.
After that, the instrumented code is able to record event logs models during its
execution.

3.3.2. Metamodel for event models

The Event model is represented according to the event metamodel package of the
KDM specification30 rather than the code and action one such as the code model.
Figure 3 shows the event metamodel package of the KDM specification as well as
other used metaclasses of other KDM packages needed to represent event models.
The EventModel metaclass (the root metaclass) represents an event model which
contains (i) one or more EventResource elements stereotyped as << Process >>,
which represent the business processes supported by the LIS, and (ii) instances of
the EventAction metaclass. EventResource metaclass is specialized into the State,
Transition and Event metaclass, or even those EventResource elements stereo-
typed as << Process >> contain other EventResource elements stereotyped as
<< Process Instance >> which represent a particular execution sequence of busi-
ness activities of the respective business process. The Event metaclass is finally used
for modeling the event regarding the execution of a particular business activity sup-
ported by the LIS. The Event metaclass contains the features name representing
the name of the executed business activity, and the feature kind to indicate if this
event is refer to the start or end of the execution of this business activity. The

1350005-9



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

Fig. 3. The event metamodel according to the KDM standard and the extension mechanism.

Event metaclass is extended by means of tagged values to incorporate additional
information regarding the originator and timestamp. Each instance of the Event
metaclass is additionally linked to an instance of the CodeElement metaclass (from
the code model) that represents the piece of source code that support the execution
of the registered business activity.

3.4. Business process view generation

To obtain different business process models (representing process views) the
approach provides a model transformation taking both input models into account:
code and event models. The model transformation is considered as a Y-
transformation (due to the underlying two-to-one relationship). The transformation
takes two different input models and obtains a single output model [see Fig. 1(c)].

The model transformation supports pattern matching between these models.
Pattern matching techniques check some sequence of tokens for the presence of the
elements of some patterns. In contrast to pattern recognition, the match usually has
to be exact. The patterns of this proposal are defined by means of either sequences
or tree structures of elements of the code and event model.

The proposed model transformation is based on a preliminary set of business
patterns previously provided in Ref. 12, which were developed to discover business
processes from code models following a static approach. The main difference is that
the previous transformation implements a one-to-one relationship between code
model and business process model while the current one incorporates the event
model as an additional input in a two-to-one relationship.

The previous patterns recognize certain structures in a source code model
and infer specific elements in the target business process model (see Table 1 for
an overview). For example, the sequence pattern recognizes callable units (e.g.

1350005-10



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

Table 1. Patterns to discover business processes from code and event model.

Pattern Use Description

P1. BPD Skeleton D This pattern creates the root structure of the BP model. It creates
a BP diagram for each KDM code model. Also, it builds a pool
element with a nested process in the BP diagram for each package
of the KDM code model.

P2. Sequence
M This pattern takes any callable piece of code from the KDM code

model and maps them into tasks in the BP diagram. In addition,
the sequence of calls to callable units is transformed into a set of
sequence flows in the same order between the tasks built from the
callable unit respectively.

P3. Branching D This pattern transforms each conditional jump of the source code
that has two mutually exclusive choices into an exclusive gateway
and two different sequence flows in the BP model. Typically those
exclusive conditional branches are related to the if-then-else or
switch clauses in several programming languages. The exclusive
gateway represents the condition that is evaluated and the two
sequence flows represent two conditional transitions that depend on
the value (true or false) of the evaluation.

P4. Collaboration M Each call to external callable unit (i.e. API libraries or external
components outside the legacy system) is transformed into an
auxiliary task as well as two sequence flows: the first from the
source task to the auxiliary task and the second returning to the
source task.

P5. Data Input
M This pattern builds a data object in the BP model for each input

data within a callable unit in the KDM code model. Also, this
pattern builds an association between the data objects and the task
previously built from the callable unit. This pattern only considers
as input data the parameters or arguments of the callable unit, but
it does not consider the auxiliary variables within the callable unit.

P6. Data Output M Each piece of output data involved in a callable unit is transformed
by means of this pattern into a data object as well as an
association from the task (built from the callable unit) to the data
object. This pattern excludes as output data the auxiliary and
intermediate data in the body of the callable unit. The output data
is the data returned by the callable unit or external data related to
databases or files.

P7. Start
D The task building from the callable unit that starts the execution of

any program or application of the legacy system is considered the
initial task. Therefore, a start event is built into the BP diagram
and a sequence flow from this event to the initial task is also
created.

P8. Implicit
Termination D This pattern builds an end event in the BP model. Then, it creates

sequence flows from “end task” and those flows merge in the end
event. A task is considered an “end task” if this task does not have
any outgoing sequence flow.

1350005-11



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

Table 1. (Continued)

Pattern Use Description

P9. Conditional
Sequence

M This pattern transforms each conditional call into a sequence flow
fired under a conditional intermediate event through to the task
related to the callable unit. This pattern makes it possible to create
arbitrary cycles in the BP diagram.

P10. Exception
M Each call to callable unit under any exception is transformed into a

task for the piece of source code that handles the exception as well
as a sequence flow fired under an error intermediate event. Indeed,
this pattern can be understood as a specialization of the previous
pattern P9.

P11. Process
Instance

A Creates a sequence of business activities for each business process
instances and interconnects them by means of sequence flows
following the order of events in the business process instance.

P12. Process
Instance
Branching

A Create “and” gateways for each alternative sequence in different
business process instances of the event model.

methods, functions, procedures, etc.) and the respective calls between them in the
code model. That pattern then creates a new task in the business process model
for each callable unit and a sequence flow for each call.

In order to combine static and dynamic approach and obtain business process
views, the approach modifies some of the patterns provided in Ref. 12 (M), depre-
cates other ones (D) and incorporates additional patterns (A) taking information
of the event model into account (see Table 1).

3.4.1. Deprecated patterns

Most deprecated patterns are discarded since the business process information that
they consider can be discovered from event models with higher accuracy levels than
from code models. For example, pattern P1 aimed at delimiting the scope of each
business process (see Table 1) is deprecated because an event model can be used
to obtain explicit definitions of each business process, thus, it is not necessary to
infer business process structure. Patterns P7 and P8 are also discarded for the same
reason since an event model contains the start and end points of business processes.
This approach adds the new pattern P11 to recover the same required information
from event models instead of code models which are statically obtained.

Pattern P3 (see Table 1) is also deprecated since the discovery of branches is
based on choice or decision statements within code model. Unfortunately, it cannot
know the result of the decision (i.e. the target statement where the execution flow
will continue). As a consequence, the new pattern P12 is added considering the

1350005-12



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

event model’s information to discover the choices and respective parallel branches of
business processes. Consequently, in all these cases, it is more appropriate to directly
take the information from the event model, instead of deducing that knowledge from
code models by means of heuristics.

3.4.2. Modified patterns

Moreover, other patterns proposed in Ref. 12 have been modified (M) (e.g. Patterns
P2, P4, P5, P6, P9 and P10 in Table 1). All these patterns are enhanced by consid-
ering a new important requisite: a business activity is created from a callable unit
only when the respective business activity has been executed, i.e. it is registered in
the event model. This means that code and event models are merged and only the
business activities present in both models are added to the business process view.
This is the mechanism to combine both kinds of models. Table 2 present a matrix
between the input elements of code/event models as well as the output elements
generated in business process models for each pattern modified or added.

3.4.3. Added patterns

Finally, Table 1 shows the new patterns added (A) to consider additional infor-
mation of the event model (i.e. Patterns P11 and P12). Pattern P11 takes each
business process instance in the event log and generates the respective sequence
of business activities that were found in events of the process instance. Only those
business activities that are also present in the input code model will be represented
in the business process view model.

Moreover, Pattern P12 (see Table 1) allows defining different branches in the
business process view when two different process instances in the event model repre-
sent two sequences with a common and non-common part. For example, if there are
two instances executing the sequences of activities {A, B, x, C} and {A, B, y, C},
the discovered business process would be defined as the sequence of activities A
and B, a branching sequence with activities “x” and “y” in parallel, and finally
the common activity C. The different part of a sequence of activities (e.g. activities
“x” and “y”) are separated by means of a gateway element in the business process
model (see Table 2).

3.5. Model transformation implementation

The proposed transformation [see Fig. 1(c)] is implemented using QVT
(Query/View/Transformation).31 QVT consists of two different, but related, lan-
guages: Operational Mappings and Relation. It particularly uses QVT Relation,
which provides a declarative and rule-based specification, since it facilitates the
definition of the proposed patterns and declarative constraints that must be satis-
fied by the metaclass instances of the input and output models.

A model transformation defined through QVT Relation language consists of a set
of relations with two kinds of domains, which define variables that can be matched

1350005-13



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

T
a
b
le

2
.

T
ra

n
sf

o
rm

a
ti

o
n

b
et

w
ee

n
in

p
u
t

a
n
d

o
u
tp

u
t

el
em

en
ts

th
ro

u
g
h

p
ro

p
o
se

d
p
a
tt

er
n
s.

B
u
si

n
es

s
P

ro
ce

ss
M

o
d
el

s

T
a
sk

S
eq

u
en

ce
A

ss
o
ci

a
ti

o
n

D
a
ta

In
te

rm
ed

ia
te

E
x
ce

p
ti

o
n

P
ro

ce
ss

S
ta

rt
E

n
d

G
a
te

w
ay

F
lo

w
O

b
je

ct
E

v
en

t
E

v
en

t
E

v
en

t
E

v
en

t

C
o
d
e

M
o
d
el

s
C

a
ll
a
b
le

u
n
it

P
2
,
P

4
,
P

5
,
P

6
,
P

9
,
P

1
0

C
a
ll
s

P
2
,
P

4
,
P

9
,
P

1
0

R
ea

d
s

P
5

W
ri

te
s

P
6

S
to

ra
b
le

U
n
it

P
5
,
P

6
T
ru

e
fl
ow

P
9

F
lo

w
P

1
0

E
v
en

t
M

o
d
el

s
E

v
en

t
m

o
d
el

P
1
1
,
P

1
2

E
v
en

t
re

so
u
rc

e
P

1
1

P
1
1

P
1
2

E
v
en

t
P

1
1
,
P

1
2

P
1
1
,
P

1
2

1350005-14



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

in the type of a given model metaclass.31 Input domains (tagged with the checkonly
keyword) define a set of metaclasses of the input metamodel and a set of constraint
related to those metaclasses which must be fulfilled. Outputs domains (tagged with
the enforce keyword) define a template of metaclasses and their properties that
must be modified or created in the output model to satisfy the relation. The imple-
mentation consists of a set of relations by supporting all the proposed patterns
which check the existence of the input elements of Table 2 (checkonly domains) and
generates the output elements summarized in Table 2 (enforce domains).

To illustrate the implementation of the transformation Fig. 4 shows the “Pro-
cessInstance2Sequence” relation, which implements Pattern P11 (see Table 1).
Due to space limitation, this paper only shows this relation as example although
the entire transformation is online available.32 This relation has three check-
only domains (lines 5 to 16) that are respectively defined on instances of the
ProcessInstance, Event and Process metaclass. This relation is invoked from a pre-
vious relation that takes into account a particular code model and provides the
actual values (as parameters) for these three checkonly domains. In summary, these
domains check the existence of two different events in a same process instance.
The enforce domain (see lines 17 to 37 in Fig. 4) creates the two respective busi-
ness tasks (lines 22 and 26) and a sequence flow between those tasks (line 30).
These elements are created in the business process view model only for contigu-
ous business tasks, i.e. tasks that were executed, at least once, in a row. This
constraint is evaluated in the when clause by invoking the query “subsequent”
(see lines 42 to 45 in Fig. 4).

The final result obtained by the model transformation is a set of business process
views with which to solve the problem of concept location identification. The next
section provides a case study in order to demonstrate the feasibility of the proposal.

4. Case Study

In order to evaluate the proposal, this section provides a multi-case study with
AELG-members — an author management system — and V-Lab — a web applica-
tion of a chemical laboratory. The obtained results are compared with the results
obtained in two previous case studies33,13 conducted with the same LIS by apply-
ing static and dynamic approaches in isolation without considering business process
views in a combined way.

Despite the comparison with one more approach from the literature would be
very appropriate to strengthen conclusions, such approaches are hardly ever vali-
dated, and other proposals were manually validated with a tool and a system under
study non-available to replicate the study under the same conditions.

The case study was rigorously planned and executed by following the protocol
for conducting case studies in the software engineering field proposed by Runeson
et al.34 The following subsections present in detail all the different case study stages
according to this well-proven protocol (i.e. design, case selection, execution, data
collection, analysis and interpretation, and threats to the validity).

1350005-15



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

Fig. 4. The “ProcessInstance2Sequence” QVT relation.

4.1. Design

The object of study is the proposed approach, and the purpose of this study is
the evaluation of its effectiveness. The main hypothesis is that the discovery of
business process views from code and event model in combination is suitable for
achieve concept location between source code and executed business activities. The
main research question is therefore defined as RQ.

RQ. Can the approach obtain specific business process views located in code
with better quality levels than the entire business process obtained with
previous techniques?

1350005-16



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

4.1.1. Independent variables

In order to answer the research question, the study considers as the independent
variable the set of retrieved models for three kinds of approaches: static, dynamic
and combined. Due to the fact that each model retrieved is considered as different
analysis units, the study follows an embedded design according to the Yin’s catego-
rization.35 In addition, the study can be considered as a multi-case study since it
is conducted with two different LIS.

4.1.2. Dependent variables

Moreover, the study considers some measures as dependent variables for business
process models obtained using each approach (i.e. static, dynamic and combined).
These measures facilitate a quantitative analysis to answer the research question.
The study particularly defines five measures:

• Relative size of the process view, which can only be evaluated for the combined
approach (i.e. the percentage of the number of business activities present in the
process view).

• Complexity of the business process model which is based on the structural intri-
cacy36 and is evaluated regarding the amount of sequence flows (arcs) with respect
to the number of tasks (nodes) (1). Complexity is inversely related to understand-
ability, since a very complex model makes it probably less understandable than
simple models.

• Precision (2) that represents the exactness or fidelity of business process model
retrieved.

• Recall (3) which is a measure of completeness regarding business process model
retrieved.

• F-measure (4) which combines precision and recall by means of a harmonic
mean.37 It is due to the fact, that precision and recall have an inverse relationship
and both measures cannot therefore be evaluated in isolation.

Complexity =
{sequence flows}
{business tasks} , (1)

Precision =
{recovered relevant tasks}

{recovered relevant tasks} + {recovered non relevant tasks} ,

(2)

Recall =
{recovered relevant tasks}

{recovered relevant tasks} + {non recovered relevant tasks} , (3)

F measure =
2 · Precision · Recall

Precision + Recall
. (4)

Precision and recall measure the similarity between a mined business process
M and a reference business process R. Precision indicates what proportion of M

1350005-17



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

matches R (i.e. how exact M is), while recall indicates what proportion of R is
present in M (i.e. how complete M is). The study considers the task element as the
score unit in order to apply these measures in a business process recovery scenario.
Additionally, other elements such as sequence flows are implicitly considered by
checking pre- and post-sequence flows of a certain task. It uses the opinions of
business experts to discover which recovered tasks are or are not relevant. The
precision measure (2) is therefore defined as the number of recovered relevant tasks
divided by the total number of recovered tasks, while the recall measure (3) is
defined as the number of recovered relevant tasks divided by the total number of
relevant tasks.

4.2. Case selection

The first selected case is AELG-members, which is an existing author management
system of a Spanish public administration. AELG is the Spanish abbreviation for
Association of Writers in Galician Language. The system automates several services
like author registration, cancelation of memberships and payment of fees. AELG-
members was released four years ago, and it has had three medium modifications
and a large modification (versions 1.1, 2.0, 2.1, and 2.2), thus, it is actually a LIS.
From a technological point of view, AELG-members is a Java standalone application
whose architecture follows the traditional structure into three layers: (i) the domain
layer supporting all the business entities and controllers; (ii) the presentation layer
dealing with the user interfaces; and (iii) the persistency layer handling data access.
The total size of the legacy system is 23.5 KLOC (thousands of lines of source code).

The second system under study is V-Lab, which is a web application used by
Villasante Laboratory a company in the water and waste industry. V-Lab manages
information related to chemical laboratories, customers and products such as chem-
ical analysis, dilutions, and chemical calibrations. The analyses supported by the
application examined different parameters, including a large number of physical,
chemical and microbiological parameters according to current regulations and laws
for controlling water quality. From a technological viewpoint V-Lab is a Java-based
web application following the MVC (Model-View-Controller) architecture. It was
released six years ago, and it has undergone three major modifications with seven
medium modifications in total. The version history without minor modifications
was: 1.0; 1.1; 2.0; 2.1; 2.2; 3.0; 3.1; 3.2; 3.3; 3.4; 4.0. The total size of the legacy
system is 28.8KLOC.

In order to illustrate how the proposal works, the case study focuses on artifacts
obtained during the application of the model transformation to the first system. In
this sense, Fig. 5 shows the business process supported by AELG-Members, which
is considered as the reference business process model. The main business activi-
ties carried out by the writers’ organization, including, among others, “insert new
author”, “edit author”, “establish fees”, “import author” from different sources,
and “print reports”.

1350005-18



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

Fig. 5. Reference business process model of the AELG-members system.

4.3. Execution

The execution procedure consists of the following steps: (i) at the beginning, a set
of code models is obtained for each package of legacy source code; (ii) in parallel, an
event model is obtained by executing an instrumented version of the LIS; (iii) After
that, in order to answer the research question, a set of business process views is
obtained by combining the event model and each code model; (iv) finally, business
process views are qualitatively analyzed and some measures are taken.

Figure 6 presents as example the three models involved in the proposed trans-
formation with AELG-Members. First, the code model, which is automatically
obtained through the mentioned static analysis technique (see e.g. Sec. 3.2), depicts
all the callable units and the calls between them that are within the code package
“fees” [see Fig. 6(a)]. Moreover, the event model obtained following the dynamic
approach (see e.g. Sec. 3.2.2) contains events regarding the entire system [see
Fig. 6(b)]. The event model shows the process “Categories Management” and some
process instances in an expanded way.

Finally, Fig. 6(c) provides the business process view obtained by executing the
proposed model transformation. The business process view represents the part of
the “Categories Management” business process that is supported by the “fees” code
package. The business process view in Fig. 6(c) exposes the three activities that are
present in code and event model at the same time (i.e. updateFeeType, getFeeType
and addFeeType). As a result, these three business activities (the concepts) of the
business process view are located in the respective “fees” code package.

4.4. Data collection

After transforming all the code packages, relevant information related to the afore-
mentioned measures is collected to be analyzed later. Table 3 provides the mean
values for the measures depicted in Sec. 4.1, which were obtained for the combined
approach as well as the static and dynamic one. The information regarding static

1350005-19



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

Fig. 6. The example transformation’s models for a particular source code package.

and dynamic approaches is taken from a previous case study involving the same
systems.33,13

Mean values of the collected data from AELG-Members corresponds to a sample
size of 25 business process models for combined and static approach, and three for
the dynamic one. In case of V-Lab, mean values were obtained from 32 business
process models for combined and static approach, and four models for the dynamic
one. While static and combined approach respectively generate a business process
and a business process view for each source code package, the dynamic one directly
obtains the three whole business processes from the execution of different business
process instances in the event model. This is due to the fact that such models were
discovered by means of process mining algorithms. These algorithms provide a few
alternatives from the runtime information since it only provides the real sequence
but not all the alternatives such as the static approach.

4.5. Analysis and interpretation

According to the main research question (see e.g. Sec. 4.1), the means of relative
size are 21% and 43% (see Fig. 6) which means that the size of the business process

1350005-20



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

T
a
b
le

3
.

Q
u
a
li
ta

ti
v
e

m
ea

su
re

m
en

t
fo

r
th

e
co

m
b
in

ed
,
st

a
ti

c
a
n
d

d
y
n
a
m

ic
a
p
p
ro

a
ch

.

C
o
m

b
in

ed
A

p
p
ro

a
ch

S
ta

ti
c

A
p
p
ro

a
ch

D
y
n
a
m

ic
A

p
p
ro

a
ch

R
el

a
ti

v
e

C
o
m

p
le

x
it
y

P
re

ci
si

o
n

R
ec

a
ll

F
-

C
o
m

p
le

x
it
y

P
re

ci
si

o
n

R
ec

a
ll

F
-

C
o
m

p
le

x
it
y

P
re

ci
si

o
n

R
ec

a
ll

F
-

S
iz

e
M

ea
su

re
M

ea
su

re
M

ea
su

re

A
E
L
G

M
ea

n
0
.2

1
1
.3

4
0
.8

1
0
.7

2
0
.7

7
1
.8

2
0
.5

1
0
.7

8
0
.6

1
1
.5

1
0
.7

0
0
.7

6
0
.7

2
S
td

.
D

ev
.

0
.1

3
0
.2

8
0
.0

4
0
.0

2
0
.0

1
1
.3

5
0
.0

7
0
.1

1
0
.0

7
0
.8

7
0
.1

4
0
.1

0
0
.0

4
V

-L
a
b

M
ea

n
0
.4

3
1
.3

0
0
.8

1
0
.7

2
0
.7

7
1
.6

8
0
.5

3
0
.8

3
0
.6

5
1
.4

9
0
.7

0
0
.7

9
0
.7

4
S
td

.
D

ev
.

0
.0

6
0
.3

3
0
.0

4
0
.0

2
0
.0

1
1
.1

7
0
.1

6
0
.0

8
0
.1

4
0
.7

0
0
.0

9
0
.0

4
0
.0

6

1350005-21



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

views retrieved for each source code package represent on average 21% of the entire
business process supported by AELG-Members and 43% for V-Lab. Business pro-
cess views generally are not disjoint sets of activities, i.e. they could be overlap-
ping through some business activities repeated in different views. The advantage of
smaller business process views regarding whole business processes is that it allows
maintainers focusing on the particular parts of the business processes that are sup-
ported by a specific piece of source code. Moreover, the complexity ratio of business
process views of the combined approach (1.34) is lower than models obtained using
the static (1.82) or dynamic (1.51) approach in case of AELG-Members and a simi-
lar complexity ratio for V-Lab in case of combined approach (1.30) as well as for the
static and dynamic approach (1.68 and 1.49 respectively) (see Fig. 6). Since under-
standability and complexity have an inverse relationship,38 the understandability of
business process views of the combined approach is higher than the understandabil-
ity of business process models obtained by code models or event models in isolation.
The effectiveness of the combined approach in both systems is therefore better than
the previous approaches in isolation.

Regarding the measures related to the effectiveness of the technique (i.e. preci-
sion, recall and F-measure) the combined approach presents better results for both
systems (see Fig. 6). The precision values obtained for business process views are
better since these views discard some wrong business activities, which are recov-
ered by using both static and dynamic approaches. Recall values are, however, a
bit lower than values obtained for the other approaches. This is due to the fact that
some business activities could not be considered in the event model as well as in
the code model at the same time. As a result, these activities would not be recov-
ered in business process views using the proposed combined approach. Anyway, the
mean of F-measure for AELG-Members, which is used as a combined value of both
measures, is higher (0.77) than F-measure mean of the static (0.61) and dynamic
(0.72) approach. In case of V-Lab, the F-measure is the same (0.77), which is bet-
ter than values obtained for the static (0.65) and dynamic (0.74) approach (see
Fig. 6).

The quantitative analysis shows that there is not a great difference (0.05 and
0.03 for both systems) between the dynamic approach and combined one. Anyway,
a qualitative analysis demonstrates that the combined approach is able to provide
business process views (the main goal) with at least a similar F-measure, i.e. the
efficiency is not altered. As conclusion, the main research question can therefore be
answered as true.

4.6. Threats to the validity

Finally, the validity of the results must be assessed as unbiased and true for the
whole population for which we wish to generalize the results. For this purpose, this
section presents the threats to the validity of this study and possible actions to
mitigate them.

1350005-22



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

The major threat to the internal validity concerns the particular implementa-
tion of the model transformation to obtain business process views. The particular
implementation using QVT relations may affect the results (efficiency in particu-
lar) since the values measured might have been different if the proposed concept
location technique is implemented with a different model transformation language.
To mitigate this threat, the study could be replicated using several implementa-
tions according to different model transformation languages. Another threat to the
internal validity is the set of workflow patterns proposed since additional patterns
could be added to extend the transformation, or even the current patterns could
be improved to consider additional information and aspects from the source code.
In particular, these patterns do not consider explicitly the discovery of business
activities from several callable units since it obtains compound activities from sev-
eral fine-grained tasks previously obtained from atomic callable units. In order to
mitigate this threat some clustering and refactoring techniques may be provided to
compound business activities from atomic ones.

Regarding the construct validity, the main threat is the way in which the mea-
sured values are used to determine the suitability of the proposed approach. Future
replications could be improved by considering the maintainers’ opinion through
some questionnaires in order to know if the concept location is enhanced thorough
the obtained business process views.

Finally, external validity is concerned with the generalization of the results to
the whole population, which is considered as LISs. The outgoing results could be
generalized to this population. However, the specific cases based on the Java plat-
form (which is additionally object-oriented) is a bias to be noted. Thus, the results
can be strictly extended to this kind of LISs. In order to mitigate this threat, the
study should be replicated involving other technologies. Furthermore, the approach
does not have to be limited to LISs, since it could also be applied to new informa-
tion systems, for which maintainers also want to understand the mappings between
code fragments and business process activities.

5. Conclusions and Future Work

This paper presents a concept location approach based on the extraction of business
process views, i.e. it considers business activities as the concept to be located. The
approach, which follows the model-driven development principles, combines code
models and event models to obtain business process views. Each view represents
the part of the full business process that is supported by a particular piece of source
code. As a result, business activities are mapped to the existing source code.

Compared to other proposals, this approach can improve the concept location
during software modernization, since it uses business activities (at higher abstrac-
tion level) as concepts and links concepts and source code in two directions. The
achieved concept location entails valuable knowledge when a LIS is modernized.
First, when a subsystem is modernized, maintainers may know the business process

1350005-23



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

fragments, i.e. all the functionalities supported by the subsystem. Second, if a part
of a business process is modified by an organization to adapt to environmental
changes, maintainers may also know the specific pieces of source code involved in
those business activities, which should be respectively modernized to align the LIS.
Furthermore, business processes are supported in modern organizations by several
heterogeneous IT systems (e.g. there are PAISs and traditional LISs at the same
time). In this scenario, our approach provides good heterogeneity support since it
uses standard representations. First, the approach uses event log models using the
MXML format and obtained independently from PAISs or traditional LISs. Second,
the approach uses code models represented using the recent standard KDM30 to be
used during process view generation.

The feasibility of the proposal has been assessed by means of a case study
involving two real-life LISs, which were the cases under study in the validation of
previous, precursory approaches. The study demonstrates that (i) the approach can
obtain business process views from the combination of code and event models, and
(ii) the obtained views have better quality levels than the full business processes,
since some undesirable business activities are discarded in the business process
views.

The work-in-progress focuses on the definition of additional patterns to rec-
ognize additional aspects of business processes views like parallel branches from
asynchronous calls or compound complex business activities from atomic callable
units. In addition, the study may be repeated with different LISs.

Acknowledgments

This work was supported by the FPU Spanish Program and the R&D projects
PEGASO/MAGO (TIN2009-13718-C02-01) and GEODAS-BC project (Ministerio
de Economı́a y Competitividad and FondoEuropeo de Desarrollo Regional FEDER,
TIN2012-37493-C03-01). Additionally, this work was supported by the University
of Innsbruck.

References

1. W. M. Ulrich, Legacy Systems: Transformation Strategies (Prentice Hall, 2002), p. 448.
2. J. Jeston, J. Nelis and T. Davenport, Business Process Management: Practi-

cal Guidelines to Successful Implementations, 2nd edn. (Butterworth-Heinemann
(Elsevier Ltd.), USA, 2008), p. 468.

3. B. Paradauskas and A. Laurikaitis, Business knowledge extraction from legacy
information systems, J. Inf. Technol. Contr. 35(3) (2006) 214–221.

4. W.-J. V. D. Heuvel, Aligning Modern Business Processes and Legacy Systems: A
Component-Based Perspective (Cooperative Information Systems) (The MIT Press,
2006).

5. W. van der Aalst and A. J. M. M. Weijters, Process mining, in Process-Aware
Information Systems: Bridging People and Software Through Process Technology, eds.

1350005-24



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

Concept Location Modeling

M. Dumas, W. van der Aalst and A. Ter Hofstede (John Wiley & Sons, Inc., 2005),
pp. 235–255.

6. M. Castellanos, K. A. D. Medeiros, J. Mendling, B. Weber and A. J. M. M. Weitjers,
Business process intelligence, in Handbook of Research on Business Process Model-
ing, eds. J. J. Cardoso and W. M. P. van der Aalst, 2009 (Idea Group Inc., 2009),
pp. 456–480.

7. M. Dumas, W. van der Aalst and A. Ter Hofstede, Process-Aware Information
Systems: Bridging People and Software Through Process Technology (John Wiley &
Sons, Inc., 2005).

8. W. M. P. van der Aalst, B. F. van Dongenm, C. Günther, A. Rozinat, H. M. W.
Verbeek and A. J. M. M. Weijters, ProM: The process mining toolkit, in 7th Int.
Conf. Business Process Management (BPM’09) — Demonstration Track, Springer-
Verlag, Ulm, Germany, 2009, pp. 1–4.

9. R. Pérez-Castillo, B. Weber, I. Garćıa Rodŕıguez de Guzmán and M. Piattini, Toward
obtaining event logs from legacy code, Business Process Management Workshops
(BPI’10), 2010, Lecture Notes in Business Information Processing (LNBIP 66 - Part
2), pp. 201–207.

10. R. Pérez-Castillo, B. Weber, I. Garćıa Rodŕıguez de Guzmán and M. Piattini, Pro-
cess mining through dynamic analysis for modernizing legacy systems, IET Softw. J.
5(3) (2011) 304–319.

11. T. Eisenbarth, R. Koschke and D. Simon, Locating features in source code, IEEE
Trans. Softw. Eng. 29(3) (2003) 210–224.

12. R. Pérez-Castillo, I. Garćıa-Rodŕıguez de Guzmán, O. Ávila-Garćıa and M. Piattini,
On the use of patterns to recover business processes, in 25th Annual ACM Symp.
Applied Computing (SAC’10), ACM, Sierre, Switzerland, 2010, pp. 165–166.

13. R. Pérez-Castillo, B. Weber, I. Garćıa Rodŕıguez de Guzmán, M. Piattini and Á. S.
Places, An empirical comparison of static and dynamic business process mining, in
26th Annual ACM Symp. Applied Computing (SAC’11), ACM, TaiChung, Taiwan,
2011, pp. 269–276.

14. R. Eshuis and P. Grefen, Constructing customized process views, Data Knowl. Eng.
64(2) (2008) 419–438.

15. D. Schumm, F. Leymann and A. Streule, Process viewing patterns, in 14th IEEE Int.
Enterprise Distributed Object Computing Conf. (EDOC ), 2010.

16. H. R. Motahari-Nezhad, R. Saint-Paul, F. Casati and B. Benatallah, Event correla-
tion for process discovery From web service interaction logs, VLDB J. 20(3) (2011)
417–444.

17. W. van der Aalst, T. Weijters and L. Maruster, Workflow mining: Discovering process
models from event logs, IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142.

18. A. K. Medeiros, A. J. Weijters and W. M. Aalst, Genetic process mining: An experi-
mental evaluation, Data Min. Knowl. Discov. 14(2) (2007) 245–304.

19. J. E. Ingvaldsen and J. A. Gulla, Preprocessing support for large scale process mining
of SAP transactions, Business Process Intelligence Workshop (BPI’07 ), LNCS 4928,
2008, pp. 30–41.

20. C. W. Günthe and W. M. P. van der Aalst, A generic import framework for pro-
cess event logs, Business Process Intelligence Workshop (BPI’06), LNCS 4103, 2007,
pp. 81–92.

21. Y. Zou and M. Hung, An approach for extracting workflows from e-commerce appli-
cations, in Proc. Fourteenth Int. Conf. Program Comprehension, IEEE Computer
Society, 2006, pp. 127–136.

1350005-25



2nd Reading

April 8, 2013 15:56 WSPC/S0218-8430 111-IJCIS 1350005

R. Pérez-Castillo, M. Piattini & B. Weber

22. Z. Cai, X. Yang and W. Wang, Business process recovery for system maintenance —
An empirical approach, in 25th Int. Conf. Software Maintenance (ICSM’09), IEEE
Computer Society, Edmonton, Alberta, Canada, 2009, pp. 399–402.

23. C. di Francescomarino, A. Marchetto and P. Tonella, Reverse engineering of business
processes exposed as web applications, in 13th European Conf. Software Maintenance
and Reengineering (CSMR’09), IEEE Computer Society, Fraunhofer IESE, Kaiser-
slautern, Germany, 2009, pp. 139–148.

24. N. Wilde and M. C. Scully, Software reconnaissance: Mapping program features to
code, J. Softw. Maint. 7(1) (1995) 49–62.

25. A. Marcus, A. Sergeyev, V. Rajlich and J. I. Maletic, An information retrieval
approach to concept location in source code, in Proc. 11th Working Conf. Reverse
Engineering, IEEE Computer Society, 2004, pp. 214–223.

26. K. Chen and V. Rajlich, Case study of feature location using dependence graph, in
Proc. 8th Int. Workshop on Program Comprehension, IEEE Computer Society, 2000,
p. 241.

27. OMG, Business Process Model and Notation (BPMN) 2.0. Object Management
Group, 2009, p. 496.

28. X. Zhao, C. Liu, W. Sadiq, M. Kowalkiewicz and S. Yongchareon, Implementing
Process views in the web service environment, World Wide Web 14(1) (2011) 27–52.

29. OMG, ADM Task Force by OMG. 2007 9/06/2009 [cited 2008 15/06/2009],
http://www.omg.org/.

30. ISO/IEC, ISO/IEC DIS 19506. Knowledge Discovery Meta-model (KDM),
v1.1 (Architecture-Driven Modernization). http://www.iso.org/iso/iso catalogue/
catalogue ics/catalogue detail ics.htm?ics1=35&ics2=080&ics3=&csnumber=32625.
2009, ISO/IEC, p. 302.

31. OMG, QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation, http://www.omg.org/spec/QVT/1.0/PDF. 2008, OMG.

32. R. Pérez-Castillo, MXML to KDM Transformation implemented in QVT Relations.
2011 29/03/2011 [cited 2011 29/03/2011], http://alarcos.esi.uclm.es/per/rpdel-
castillo/modeltransformations/MXML2KDM.htm.

33. R. Pérez-Castillo, I. G.-R. de Guzmán and M. Piattini, Business process archeology
using MARBLE, Inf. Softw. Technol. 53 (2011) 1023–1044.

34. P. Runeson and M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empirical Softw. Eng. 14(2) (2009) 131–164.

35. R. K. Yin, Case Study Research, Design and Methods, 3rd edn. (Sage, London, 2003).
36. E. Rolón, F. Ruiz, F. Garćıa and M. Piattini, Evaluation measures for business process

models, in 21th ACM Symp. Applied Computing, Track on Organizational Engineering
(SAC-OE’06), ACM, Dijon, France, 2006, pp. 1567–1568.

37. C. J. van Rijsbergen, Information Retrieval, 2nd edn. (Butterworths, London, 1979),
p. 208.

38. H. A. Reijers and J. Mendling, A study into the factors that influence the understand-
ability of business process models, IEEE Trans. Syst. Man Cybern. A, Syst. Humans
99 (2010) 1–14.

1350005-26


